Diffusion in Colocation Contact Networks: The Impact of Nodal Spatiotemporal Dynamics

نویسندگان

  • Bryce Thomas
  • Raja Jurdak
  • Kun Zhao
  • Ian Atkinson
چکیده

Temporal contact networks are studied to understand dynamic spreading phenomena such as communicable diseases or information dissemination. To establish how spatiotemporal dynamics of nodes impact spreading potential in colocation contact networks, we propose "inducement-shuffling" null models which break one or more correlations between times, locations and nodes. By reconfiguring the time and/or location of each node's presence in the network, these models induce alternative sets of colocation events giving rise to contact networks with varying spreading potential. This enables second-order causal reasoning about how correlations in nodes' spatiotemporal preferences not only lead to a given contact network but ultimately influence the network's spreading potential. We find the correlation between nodes and times to be the greatest impediment to spreading, while the correlation between times and locations slightly catalyzes spreading. Under each of the presented null models we measure both the number of contacts and infection prevalence as a function of time, with the surprising finding that the two have no direct causality.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Balanced clusters and diffusion process in signed networks

In this paper we study the topology effects on diffusion process in signed networks. Considering a simple threshold model for diffusion process, it is extended to signed networks and some appropriate definitions are proposed. This model is a basic model that could be extended and applied in analyzing dynamics of many real phenomena such as opinion forming or innovation diffusion in social netwo...

متن کامل

SPATIOTEMPORAL DYNAMIC OF TOXIN PRODUCING PHYTOPLANKTON (TPP)-ZOOPLANKTON INTERACTION

The present paper deals with a toxin producing phytoplankton (TPP)-zooplankton interaction in spatial environment in thecontext of phytoplankton bloom. In the absence of diffusion the stability of the given system in terms of co-existence and hopf bifurcation has been discussed. After that TPP-zooplankton interaction is considered in spatiotemporal domain by assuming self diffusion in both popu...

متن کامل

Effect of Dual-Tasking on Variability of Spatiotemporal Parameters in Subjects with and without Anterior Cruciate Ligament Deficiency Using Linear Dynamics

Purpose: The present study aimed to determine the effect of dual-tasking on spatiotemporal characteristics in subjects with and without Anterior Cruciate Ligament Deficiency (ACLD) using linear dynamics. Methods: In this mixed model design study, spatiotemporal parameters were measured in 22 patients with ACLD (25.95±4.69 y) and 22 control subjects (24.32±3.37 y) while they were walking w...

متن کامل

Revealing the impact of changing land use of the annual spatiotemporal boundary layer height (Kermanshah Case Study)

Introduction Atmospheric boundary layer (ABL), is the lowest part of the atmosphere. Its behavior is directly influenced by its contact with earth surface. On earth it usually responds to changes in surface radiative forcing in an hour or less. In this layer physical quantities such as flow velocity, temperature, moisture, etc., display rapid fluctuations (turbulence) and vertical mixing is st...

متن کامل

Simulation of nanodroplet impact on a solid surface

A novel computational fluid dynamics and molecular kinetic theory (CFD-MK) method was developed to simulate the impingement of a nanodroplet onto a solid surface. A numerical solution of the Navier–Stokes equation using a volume-of-fluid (VOF) technique was used to model nanodroplet deformation. Dynamic contact angle during droplet impact was obtained by molecular kinetic theory. This dynamic c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016